Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 329
Filtrar
1.
Clin Cancer Res ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652812

RESUMO

PURPOSE: Early intervention for High-Risk Smoldering Multiple Myeloma (HR-SMM) achieves deep and prolonged responses. It is unclear if beneficial outcomes are due to treatment of less complex, susceptible disease or inaccuracy in clinical definition of cases entered. EXPERIMENTAL DESIGN: Here, we interrogated whole genome and whole exome sequencing for 54 patients across two HR-SMM interventional studies (NCT01572480, NCT02279394). RESULTS: We reveal that the genomic landscape of treated HR-SMM is generally simple as compared to Newly Diagnosed (ND)MM counterparts with less inactivation of tumor suppressor genes, RAS pathway mutations, MYC disruption, and APOBEC contribution. The absence of these events parallels that of indolent precursor conditions, possibly explaining overall excellent outcomes. However, some patients harboring genomic complexity fail to sustain response and experience resistant, progressive disease. Overall, clinical risk scores do not effectively discriminate between genomically indolent and aggressive disease. CONCLUSIONS: Genomic profiling can contextualize the advantage of early intervention in SMM and guide personalization of therapy.

2.
Blood Adv ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38513135

RESUMO

Mycosis fungoides (MF) is the most prevalent primary cutaneous T-cell lymphoma, with an indolent or aggressive course and poor survival. The pathogenesis of MF remains unclear, and prognostic factors in the early stages are not well-established. Here, we characterized the most recurrent genomic alterations using whole-exome sequencing of 67 samples from 48 patients from Lille University Hospital (France), including 18 sequential samples drawn across stages of the malignancy. Genomic data were analyzed on the Broad Institute's Terra bioinformatics platform. We found that gain7q, gain10p15.1 (IL2RA and IL15RA), del10p11.22 (ZEB1), or mutations in JUNB and TET2 are associated with high-risk disease stages. Furthermore, gain7q, gain10p15.1 (IL2RA and IL15RA), del10p11.22 (ZEB1), and del6q16.3 (TNFAIP3) are coupled with shorter survival. Del6q16.3 (TNFAIP3) was a risk factor for progression in low-risk patients. By analyzing the clonal heterogeneity and the clonal evolution of the cohort, we defined different phylogenetic pathways of the disease with acquisition of JUNB, gain10p15.1 (IL2RA and IL15RA), or del12p13.1 (CDKN1B) at progression. These results establish the genomics and clonality of MF and identify potential patients at risk of progression, independent of their clinical stage.

3.
Blood Cancer Discov ; : OF1-OF7, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38441243

RESUMO

SUMMARY: While the current approach to precursor hematologic conditions is to "watch and wait," this may change with the development of therapies that are safe and extend survival or delay the onset of symptomatic disease. The goal of future therapies in precursor hematologic conditions is to improve survival and prevent or delay the development of symptomatic disease while maximizing safety. Clinical trial considerations in this field include identifying an appropriate at-risk population, safety assessments, dose selection, primary and secondary trial endpoints including surrogate endpoints, control arms, and quality-of-life metrics, all of which may enable more precise benefit-risk assessment.

4.
Cancer Discov ; 14(2): 227-239, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-37916958

RESUMO

PIK3CA mutations occur in ∼8% of cancers, including ∼40% of HR-positive breast cancers, where the PI3K-alpha (PI3Kα)-selective inhibitor alpelisib is FDA approved in combination with fulvestrant. Although prior studies have identified resistance mechanisms, such as PTEN loss, clinically acquired resistance to PI3Kα inhibitors remains poorly understood. Through serial liquid biopsies and rapid autopsies in 39 patients with advanced breast cancer developing acquired resistance to PI3Kα inhibitors, we observe that 50% of patients acquire genomic alterations within the PI3K pathway, including PTEN loss and activating AKT1 mutations. Notably, although secondary PIK3CA mutations were previously reported to increase sensitivity to PI3Kα inhibitors, we identified emergent secondary resistance mutations in PIK3CA that alter the inhibitor binding pocket. Some mutations had differential effects on PI3Kα-selective versus pan-PI3K inhibitors, but resistance induced by all mutations could be overcome by the novel allosteric pan-mutant-selective PI3Kα-inhibitor RLY-2608. Together, these findings provide insights to guide strategies to overcome resistance in PIK3CA-mutated cancers. SIGNIFICANCE: In one of the largest patient cohorts analyzed to date, this study defines the clinical landscape of acquired resistance to PI3Kα inhibitors. Genomic alterations within the PI3K pathway represent a major mode of resistance and identify a novel class of secondary PIK3CA resistance mutations that can be overcome by an allosteric PI3Kα inhibitor. See related commentary by Gong and Vanhaesebroeck, p. 204 . See related article by Varkaris et al., p. 240 . This article is featured in Selected Articles from This Issue, p. 201.


Assuntos
Neoplasias da Mama , Fosfatidilinositol 3-Quinases , Humanos , Feminino , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Fulvestranto , Inibidores de Fosfoinositídeo-3 Quinase , Classe I de Fosfatidilinositol 3-Quinases/genética , Mutação
5.
Cancer Res Commun ; 3(12): 2560-2571, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38019104

RESUMO

Clonal hematopoiesis (CH) at time of autologous stem cell transplant (ASCT) has been shown to be associated with decreased overall survival (OS) and progression-free survival (PFS) in patients with multiple myeloma not receiving immunomodulatory drugs (IMiD). However, the significance of CH in newly diagnosed patients, including transplant ineligible patients, and its effect on clonal evolution during multiple myeloma therapy in the era of novel agents, has not been well studied. Using our new algorithm to differentiate tumor and germline mutations from CH, we detected CH in approximately 10% of 986 patients with multiple myeloma from the Clinical Outcomes in MM to Personal Assessment of Genetic Profile (CoMMpass) cohort (40/529 transplanted and 59/457 non-transplanted patients). CH was associated with increased age, risk of recurrent bacterial infections and cardiovascular disease. CH at time of multiple myeloma diagnosis was not associated with inferior OS or PFS regardless of undergoing ASCT, and all patients benefited from IMiD-based therapies, irrespective of the presence of CH. Serial sampling of 52 patients revealed the emergence of CH over a median of 3 years of treatment, increasing its prevalence to 25%, mostly with DNMT3A mutations. SIGNIFICANCE: Using our algorithm to differentiate tumor and germline mutations from CH mutations, we detected CH in approximately 10% of patients with newly diagnosed myeloma, including both transplant eligible and ineligible patients. Receiving IMiDs improved outcomes irrespective of CH status, but the prevalence of CH significantly rose throughout myeloma-directed therapy.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/diagnóstico , Hematopoiese Clonal , Transplante Autólogo , Transplante de Células-Tronco , Intervalo Livre de Progressão
6.
Nature ; 623(7987): 608-615, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37938768

RESUMO

Cell therapies have yielded durable clinical benefits for patients with cancer, but the risks associated with the development of therapies from manipulated human cells are understudied. For example, we lack a comprehensive understanding of the mechanisms of toxicities observed in patients receiving T cell therapies, including recent reports of encephalitis caused by reactivation of human herpesvirus 6 (HHV-6)1. Here, through petabase-scale viral genomics mining, we examine the landscape of human latent viral reactivation and demonstrate that HHV-6B can become reactivated in cultures of human CD4+ T cells. Using single-cell sequencing, we identify a rare population of HHV-6 'super-expressors' (about 1 in 300-10,000 cells) that possess high viral transcriptional activity, among research-grade allogeneic chimeric antigen receptor (CAR) T cells. By analysing single-cell sequencing data from patients receiving cell therapy products that are approved by the US Food and Drug Administration2 or are in clinical studies3-5, we identify the presence of HHV-6-super-expressor CAR T cells in patients in vivo. Together, the findings of our study demonstrate the utility of comprehensive genomics analyses in implicating cell therapy products as a potential source contributing to the lytic HHV-6 infection that has been reported in clinical trials1,6-8 and may influence the design and production of autologous and allogeneic cell therapies.


Assuntos
Linfócitos T CD4-Positivos , Herpesvirus Humano 6 , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Ativação Viral , Latência Viral , Humanos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Ensaios Clínicos como Assunto , Regulação Viral da Expressão Gênica , Genômica , Herpesvirus Humano 6/genética , Herpesvirus Humano 6/isolamento & purificação , Herpesvirus Humano 6/fisiologia , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Encefalite Infecciosa/complicações , Encefalite Infecciosa/virologia , Receptores de Antígenos Quiméricos/imunologia , Infecções por Roseolovirus/complicações , Infecções por Roseolovirus/virologia , Análise da Expressão Gênica de Célula Única , Carga Viral
7.
Nat Commun ; 14(1): 6203, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794034

RESUMO

The progression of precancerous lesions to malignancy is often accompanied by increasing complexity of chromosomal alterations but how these alterations arise is poorly understood. Here we perform haplotype-specific analysis of chromosomal copy-number evolution in the progression of Barrett's esophagus (BE) to esophageal adenocarcinoma (EAC) on multiregional whole-genome sequencing data of BE with dysplasia and microscopic EAC foci. We identify distinct patterns of copy-number evolution indicating multigenerational chromosomal instability that is initiated by cell division errors but propagated only after p53 loss. While abnormal mitosis, including whole-genome duplication, underlies chromosomal copy-number changes, segmental alterations display signatures of successive breakage-fusion-bridge cycles and chromothripsis of unstable dicentric chromosomes. Our analysis elucidates how multigenerational chromosomal instability generates copy-number variation in BE cells, precipitates complex alterations including DNA amplifications, and promotes their independent clonal expansion and transformation. In particular, we suggest sloping copy-number variation as a signature of ongoing chromosomal instability that precedes copy-number complexity. These findings suggest copy-number heterogeneity in advanced cancers originates from chromosomal instability in precancerous cells and such instability may be identified from the presence of sloping copy-number variation in bulk sequencing data.


Assuntos
Adenocarcinoma , Esôfago de Barrett , Neoplasias Esofágicas , Lesões Pré-Cancerosas , Humanos , Esôfago de Barrett/genética , Esôfago de Barrett/patologia , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Adenocarcinoma/genética , Adenocarcinoma/patologia , Instabilidade Cromossômica/genética , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/patologia , Genômica , Progressão da Doença
8.
medRxiv ; 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37808694

RESUMO

While the development of multiple primary tumors in smokers with lung cancer can be attributed to carcinogen-induced field cancerization, the occurrence of multiple primary tumors in individuals with EGFR-mutant lung cancer who lack known environmental exposures remains unexplained. We identified ten patients with early-stage, resectable non-small cell lung cancer who presented with multiple anatomically distinct EGFR-mutant tumors. We analyzed the phylogenetic relationships among multiple tumors from each patient using whole exome sequencing (WES) and hypermutable poly-guanine (poly-G) repeat genotyping, as orthogonal methods for lineage tracing. In two patients, we identified germline EGFR variants, which confer moderately enhanced signaling when modeled in vitro. In four other patients, developmental mosaicism is supported by the poly-G lineage tracing and WES, indicating a common non-germline cell-of-origin. Thus, developmental mosaicism and germline variants define two distinct mechanisms of genetic predisposition to multiple EGFR-mutant primary tumors, with implications for understanding their etiology and clinical management.

9.
Cancer Cell ; 41(10): 1803-1816.e8, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37738974

RESUMO

Unlike many other hematologic malignancies, Richter syndrome (RS), an aggressive B cell lymphoma originating from indolent chronic lymphocytic leukemia, is responsive to PD-1 blockade. To discover the determinants of response, we analyze single-cell transcriptome data generated from 17 bone marrow samples longitudinally collected from 6 patients with RS. Response is associated with intermediate exhausted CD8 effector/effector memory T cells marked by high expression of the transcription factor ZNF683, determined to be evolving from stem-like memory cells and divergent from terminally exhausted cells. This signature overlaps with that of tumor-infiltrating populations from anti-PD-1 responsive solid tumors. ZNF683 is found to directly target key T cell genes (TCF7, LMO2, CD69) and impact pathways of T cell cytotoxicity and activation. Analysis of pre-treatment peripheral blood from 10 independent patients with RS treated with anti-PD-1, as well as patients with solid tumors treated with anti-PD-1, supports an association of ZNF683high T cells with response.


Assuntos
Leucemia Linfocítica Crônica de Células B , Linfoma Difuso de Grandes Células B , Humanos , Leucemia Linfocítica Crônica de Células B/patologia , Linfócitos T CD8-Positivos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Regulação da Expressão Gênica , Imunoterapia
10.
Cell ; 186(18): 3921-3944.e25, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37582357

RESUMO

Cancer driver events refer to key genetic aberrations that drive oncogenesis; however, their exact molecular mechanisms remain insufficiently understood. Here, our multi-omics pan-cancer analysis uncovers insights into the impacts of cancer drivers by identifying their significant cis-effects and distal trans-effects quantified at the RNA, protein, and phosphoprotein levels. Salient observations include the association of point mutations and copy-number alterations with the rewiring of protein interaction networks, and notably, most cancer genes converge toward similar molecular states denoted by sequence-based kinase activity profiles. A correlation between predicted neoantigen burden and measured T cell infiltration suggests potential vulnerabilities for immunotherapies. Patterns of cancer hallmarks vary by polygenic protein abundance ranging from uniform to heterogeneous. Overall, our work demonstrates the value of comprehensive proteogenomics in understanding the functional states of oncogenic drivers and their links to cancer development, surpassing the limitations of studying individual cancer types.


Assuntos
Neoplasias , Proteogenômica , Humanos , Neoplasias/genética , Oncogenes , Transformação Celular Neoplásica/genética , Variações do Número de Cópias de DNA
11.
Cell ; 186(18): 3945-3967.e26, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37582358

RESUMO

Post-translational modifications (PTMs) play key roles in regulating cell signaling and physiology in both normal and cancer cells. Advances in mass spectrometry enable high-throughput, accurate, and sensitive measurement of PTM levels to better understand their role, prevalence, and crosstalk. Here, we analyze the largest collection of proteogenomics data from 1,110 patients with PTM profiles across 11 cancer types (10 from the National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium [CPTAC]). Our study reveals pan-cancer patterns of changes in protein acetylation and phosphorylation involved in hallmark cancer processes. These patterns revealed subsets of tumors, from different cancer types, including those with dysregulated DNA repair driven by phosphorylation, altered metabolic regulation associated with immune response driven by acetylation, affected kinase specificity by crosstalk between acetylation and phosphorylation, and modified histone regulation. Overall, this resource highlights the rich biology governed by PTMs and exposes potential new therapeutic avenues.


Assuntos
Neoplasias , Processamento de Proteína Pós-Traducional , Proteômica , Humanos , Acetilação , Histonas/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Fosforilação , Proteômica/métodos
12.
bioRxiv ; 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37577538

RESUMO

The development of targeted therapy for patients with Multiple Myeloma (MM) is hampered by the low frequency of actionable genetic abnormalities. Gain or amplification of chr1q (Amp1q) is the most frequent arm-level copy number gain in patients with MM, and it is associated with higher risk of progression and death despite recent advances in therapeutics. Thus, developing targeted therapy for patients with MM and Amp1q stands to benefit a large portion of patients in need of more effective management. Here, we employed large-scale dependency screens and drug screens to systematically characterize the therapeutic vulnerabilities of MM with Amp1q and showed increased sensitivity to the combination of MCL1 and PI3K inhibitors. Using single-cell RNA sequencing, we compared subclones with and without Amp1q within the same patient tumors and showed that Amp1q is associated with higher levels of MCL1 and the PI3K pathway. Furthermore, by isolating isogenic clones with different copy number for part of the chr1q arm, we showed increased sensitivity to MCL1 and PI3K inhibitors with arm-level gain. Lastly, we demonstrated synergy between MCL1 and PI3K inhibitors and dissected their mechanism of action in MM with Amp1q.

13.
Science ; 381(6657): 515-524, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37535729

RESUMO

Tumor microenvironments (TMEs) influence cancer progression but are complex and often differ between patients. Considering that microenvironment variations may reveal rules governing intratumoral cellular programs and disease outcome, we focused on tumor-to-tumor variation to examine 52 head and neck squamous cell carcinomas. We found that macrophage polarity-defined by CXCL9 and SPP1 (CS) expression but not by conventional M1 and M2 markers-had a noticeably strong prognostic association. CS macrophage polarity also identified a highly coordinated network of either pro- or antitumor variables, which involved each tumor-associated cell type and was spatially organized. We extended these findings to other cancer indications. Overall, these results suggest that, despite their complexity, TMEs coordinate coherent responses that control human cancers and for which CS macrophage polarity is a relevant yet simple variable.


Assuntos
Polaridade Celular , Quimiocina CXCL9 , Neoplasias de Cabeça e Pescoço , Macrófagos , Osteopontina , Carcinoma de Células Escamosas de Cabeça e Pescoço , Microambiente Tumoral , Humanos , Quimiocina CXCL9/análise , Quimiocina CXCL9/metabolismo , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/patologia , Macrófagos/imunologia , Osteopontina/análise , Osteopontina/metabolismo , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Polaridade Celular/imunologia
16.
Nature ; 620(7973): 393-401, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37407818

RESUMO

Acquired drug resistance to anticancer targeted therapies remains an unsolved clinical problem. Although many drivers of acquired drug resistance have been identified1-4, the underlying molecular mechanisms shaping tumour evolution during treatment are incompletely understood. Genomic profiling of patient tumours has implicated apolipoprotein B messenger RNA editing catalytic polypeptide-like (APOBEC) cytidine deaminases in tumour evolution; however, their role during therapy and the development of acquired drug resistance is undefined. Here we report that lung cancer targeted therapies commonly used in the clinic can induce cytidine deaminase APOBEC3A (A3A), leading to sustained mutagenesis in drug-tolerant cancer cells persisting during therapy. Therapy-induced A3A promotes the formation of double-strand DNA breaks, increasing genomic instability in drug-tolerant persisters. Deletion of A3A reduces APOBEC mutations and structural variations in persister cells and delays the development of drug resistance. APOBEC mutational signatures are enriched in tumours from patients with lung cancer who progressed after extended responses to targeted therapies. This study shows that induction of A3A in response to targeted therapies drives evolution of drug-tolerant persister cells, suggesting that suppression of A3A expression or activity may represent a potential therapeutic strategy in the prevention or delay of acquired resistance to lung cancer targeted therapy.


Assuntos
Citidina Desaminase , Neoplasias Pulmonares , Humanos , Citidina Desaminase/deficiência , Citidina Desaminase/efeitos dos fármacos , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Quebras de DNA de Cadeia Dupla , Instabilidade Genômica , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Terapia de Alvo Molecular , Mutação , Resistencia a Medicamentos Antineoplásicos
17.
Nat Cancer ; 4(8): 1095-1101, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37474833

RESUMO

Children with acute lymphoblastic leukemia (ALL) undergoing anti-CD19 therapy occasionally develop acute myeloid leukemia (AML). The clonal origin of such lineage-switch leukemias1-4 remains unresolved. Here, we reconstructed the phylogeny of multiple leukemias in a girl who, following multiply relapsed ALL, received anti-CD19 cellular and antibody treatment and subsequently developed AML. Whole genome sequencing unambiguously revealed the AML derived from the initial ALL, with distinct driver mutations that were detectable before emergence. Extensive prior diversification and subsequent clonal selection underpins this fatal lineage switch. Genomic monitoring of primary leukemias and recurrences may predict therapy resistance, especially regarding anti-CD19 treatment.


Assuntos
Anticorpos Biespecíficos , Leucemia Mieloide Aguda , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Feminino , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Anticorpos Biespecíficos/uso terapêutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Linfócitos T
18.
Clin Cancer Res ; 29(23): 4770-4783, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37126021

RESUMO

PURPOSE: Checkpoint inhibitors have limited efficacy for children with unselected solid and brain tumors. We report the first prospective pediatric trial (NCT02992964) using nivolumab exclusively for refractory nonhematologic cancers harboring tumor mutation burden (TMB) ≥5 mutations/megabase (mut/Mb) and/or mismatch repair deficiency (MMRD). PATIENTS AND METHODS: Twenty patients were screened, and 10 were ultimately included in the response cohort of whom nine had TMB >10 mut/Mb (three initially eligible based on MMRD) and one patient had TMB between 5 and 10 mut/Mb. RESULTS: Delayed immune responses contributed to best overall response of 50%, improving on initial objective responses (20%) and leading to 2-year overall survival (OS) of 50% [95% confidence interval (CI), 27-93]. Four children, including three with refractory malignant gliomas are in complete remission at a median follow-up of 37 months (range, 32.4-60), culminating in 2-year OS of 43% (95% CI, 18.2-100). Biomarker analyses confirmed benefit in children with germline MMRD, microsatellite instability, higher activated and lower regulatory circulating T cells. Stochastic mutation accumulation driven by underlying germline MMRD impacted the tumor microenvironment, contributing to delayed responses. No benefit was observed in the single patient with an MMR-proficient tumor and TMB 7.4 mut/Mb. CONCLUSIONS: Nivolumab resulted in durable responses and prolonged survival for the first time in a pediatric trial of refractory hypermutated cancers including malignant gliomas. Novel biomarkers identified here need to be translated rapidly to clinical care to identify children who can benefit from checkpoint inhibitors, including upfront management of cancer. See related commentary by Mardis, p. 4701.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Criança , Nivolumabe/uso terapêutico , Estudos Prospectivos , Mutação , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioma/tratamento farmacológico , Glioma/genética , Glioma/patologia , Biomarcadores Tumorais/genética , Reparo de Erro de Pareamento de DNA/genética , Microambiente Tumoral
19.
Blood ; 142(5): 421-433, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37146250

RESUMO

Although BCL2 mutations are reported as later occurring events leading to venetoclax resistance, many other mechanisms of progression have been reported though remain poorly understood. Here, we analyze longitudinal tumor samples from 11 patients with disease progression while receiving venetoclax to characterize the clonal evolution of resistance. All patients tested showed increased in vitro resistance to venetoclax at the posttreatment time point. We found the previously described acquired BCL2-G101V mutation in only 4 of 11 patients, with 2 patients showing a very low variant allele fraction (0.03%-4.68%). Whole-exome sequencing revealed acquired loss(8p) in 4 of 11 patients, of which 2 patients also had gain (1q21.2-21.3) in the same cells affecting the MCL1 gene. In vitro experiments showed that CLL cells from the 4 patients with loss(8p) were more resistant to venetoclax than cells from those without it, with the cells from 2 patients also carrying gain (1q21.2-21.3) showing increased sensitivity to MCL1 inhibition. Progression samples with gain (1q21.2-21.3) were more susceptible to the combination of MCL1 inhibitor and venetoclax. Differential gene expression analysis comparing bulk RNA sequencing data from pretreatment and progression time points of all patients showed upregulation of proliferation, B-cell receptor (BCR), and NF-κB gene sets including MAPK genes. Cells from progression time points demonstrated upregulation of surface immunoglobulin M and higher pERK levels compared with those from the preprogression time point, suggesting an upregulation of BCR signaling that activates the MAPK pathway. Overall, our data suggest several mechanisms of acquired resistance to venetoclax in CLL that could pave the way for rationally designed combination treatments for patients with venetoclax-resistant CLL.


Assuntos
Antineoplásicos , Leucemia Linfocítica Crônica de Células B , Humanos , Antineoplásicos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Sequenciamento do Exoma , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteínas Proto-Oncogênicas c-bcl-2
20.
Nat Genet ; 55(5): 807-819, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37024582

RESUMO

Anti-PD-1/PD-L1 agents have transformed the treatment landscape of advanced non-small cell lung cancer (NSCLC). To expand our understanding of the molecular features underlying response to checkpoint inhibitors in NSCLC, we describe here the first joint analysis of the Stand Up To Cancer-Mark Foundation cohort, a resource of whole exome and/or RNA sequencing from 393 patients with NSCLC treated with anti-PD-(L)1 therapy, along with matched clinical response annotation. We identify a number of associations between molecular features and outcome, including (1) favorable (for example, ATM altered) and unfavorable (for example, TERT amplified) genomic subgroups, (2) a prominent association between expression of inducible components of the immunoproteasome and response and (3) a dedifferentiated tumor-intrinsic subtype with enhanced response to checkpoint blockade. Taken together, results from this cohort demonstrate the complexity of biological determinants underlying immunotherapy outcomes and reinforce the discovery potential of integrative analysis within large, well-curated, cancer-specific cohorts.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Transcriptoma/genética , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/uso terapêutico , Genômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...